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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

The MHD stagnation point flow and heat transfer over a linearly shrinking sheet has been considered in 

this article. The Navier-Stokes equations are transformed into a coupled set of non-linear ODEs using 

similarity variables, and then solved numerically. We have found that there exist two solution branches up 

to a particular value of the shrinking rate, treated as critical value. It is noticed that increasing in magnetic 

parameter (Hartmann number), increase the absolute value of the critical point. The effects of Hartmann 

number and shrinking parameter show opposite character in the velocity and thermal profiles for both the 

solution branches. To understand the flow phenomena, it’s essential to determine the stable solution.  Thus, 

we have carried a linear temporal stability analysis of these two solution branches to embed the physically 

stable solution. 
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I. INTRODUCTION 

Incompressible viscous boundary layer flows and heat transfer towards a shrinking/stretching sheet 

have generated considerable interest among  researchers due to its immense industrial and practical applications, 

for example glass-fiber production, polymer extrusion, cooling of electronic devicesetc. The pioneer work was 

due to Crane [1], who studied the steady 2D boundary layer flow of a Newtonian fluid towards a linearly 

stretching surface and found the analytical solution. This problem was extended by many authors (Refs. [2], [3]) 

by considering different fluids and diverse physical effects. Another widely studied problem is the 2D 

stagnation point flow of a viscous fluid over a flat surface. This flow problem was initially introduced by 

Hiemenz [4]. Later, Chiam [5] combined the works of [1] and [4] that is the Hiemenz flow over a linearly 

stretching sheet. Motivated by Chiam’s [5] work, many authors extended this problem by considering various 

physical aspects. One may refer the work of Mahapatra and Gupta [6] and the related references therein. 

Literature survey indicates that the stagnation point flow due to shrinking sheet was reported by Wang 

[7]. He showed that two solution branches exist numerically within a limited range of the shrinking rate and no 

solution exists for higher shrinking rate. Furthermore, Bhattacharyya [8] extended Wang’s [7] work by adding 

chemical reaction in his flow model. He reported that the thickness of the boundary layer in the upper solution 

branches (USB) is lower than the lower solution branches (LSB). Since then, many researchers worked with this 

model by considering various physical aspects and found dual solutions in the shrinking case only (see Ref. [9], 

[10]). In the case of dual solutions it becomes essential to carry a stability analysis to find the most feasible 

solution. Recently, Awaludin et al. [11] analyzed the stability of the dual solutions of Wang’s [7] work and 

reported that USB is the stable solution. 

In this article, we have studied the steady MHD stagnation point flow towards a stretching/shrinking 

surface with uniform surface temperature. Our prime motivation is to extend the two-dimensional study of 

Wang [7] in the presence of magnetic field with heat transfer and test the stability of the dual solution branches. 

The RK4 with shooting algorithm is employed to obtain the self-similar solution numerically. 

 

II. FLOW ANALYSIS 

We have considered the steady 2D stagnation point flow of an incompressible, electrically conducting 

viscous fluid impinging on a stretching/shrinking sheet at 𝑦 = 0. A uniform magnetic field 𝐵0 is imposed along 

the 𝑦 axis. Let the velocity of the sheet be𝑈𝑤 = 𝑏𝑥, where 𝑏 > 𝑜𝑟 < 0 according to the stretching or shrinking 

of the sheet. We also assume that the temperature of the stretching/shrinking sheet be 𝑇𝑤  and the ambient fluid 

temperature be 𝑇∞ . Figs. 1 and Figs. 2 are depicted the schematic diagram of this flow model. The velocities of 

the potential flow are defined as  

𝑈 = 𝑎𝑥,    𝑉 = −𝑎𝑦                                                        (1) 

Where𝑎 is constant. Let 𝑝0 be the stagnation pressure and𝑝 be the arbitrary point pressure. Using the Bernoulli’s 

equation, the pressure distribution is as follow 
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𝑝0 − 𝑝 =
1

2
𝜌(𝑈2 + 𝑉2)                                                   (2) 

Under this assumption the Navier-Stokes equations are as follow 

𝑢𝑥 + 𝑣𝑦 = 0                                                                    (3) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝑈
𝑑𝑈

𝑑𝑥
+ 𝜈𝑢𝑦𝑦 −

𝜎𝐵0
2

𝜌
(𝑢 − 𝑈)                     (4) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝛼𝑇𝑦𝑦                                                           (5) 

Where σ, ρ, α and ν are the electric conductivity, fluid density, thermal diffusivity and kinematic viscosity 

respectively. Here (𝑢,𝑣) represent the velocity components along (𝑥, 𝑦) axes respectively. 

The relevant no-slip boundary conditions (BCs) are 

𝑢 = 𝑈𝑤 ,    𝑣 = 0,    𝑇 = 𝑇𝑤at𝑦 = 0(6.1) 

𝑢 → 𝑈,    𝑇 → 𝑇∞as𝑦 → ∞                                        (6.2) 

 
Fig. 1. Stretching sheet Fig. 2. Shrinking sheet 

 

We use the following similarity variables 

𝜓 =  𝜈𝑥𝑈𝜑 𝜂 ,    𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,    𝜂 =  

𝑈

𝜈𝑥
𝑦(7) 

where,𝜓 is the stream function and 𝑢 = 𝜓𝑦 ,    𝑣 = −𝜓𝑥 . Therefore, we obtain 

𝑢 = 𝑎𝑥𝜑′ 𝜂 ,    𝑣 = − 𝑎𝜈𝜑(𝜂)                                              (8) 

Substituting (7) and (8) into Eqs. (3)-(5) we get 

𝜑′′′ + 𝜑𝜑′′ +  1 − 𝜑′2
 + 𝑀2 1 − 𝜑′ = 0(9) 

 

𝜃′′ + Pr𝜑𝜃′ = 0                                                     (10) 

The boundary conditions (6.1) and (6.2) reduced to 

𝜑 0 = 0,    𝜑′ 0 = 𝜆,    𝜃 0 = 1(11.1) 

where,𝑀 =  
𝜎

𝜌𝑎
𝐵0, 𝑃𝑟 =

𝜈

𝛼
, and 𝜆 =

𝑏

𝑎
 are the Hartmann number, Prandtl number and the velocity ratio 

respectively. The local skin friction coefficient (frictional drag coefficient) and local Nusselt number are defined 

by 

𝜑′ 𝜂 → 1,   𝜃 𝜂 → 0   as𝜂 → ∞(11.2)      

 

𝐶𝜑 =
𝜇(

𝜕𝑢

𝜕𝑦
)𝑦=0

1

2
𝜌𝑈2

,    𝑁𝑢𝑥 = −
𝑥(

𝜕𝑇

𝜕𝑦
)𝑦=0

𝑇𝑤−𝑇∞
  (12)       

Now using the (7) and (8) into (12), we obtain 

𝜑′′  0 = 2𝑅𝑒𝑥
1/2

𝐶𝜑 ,   − 𝜃′ 0 = 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥                                      (13)   

where 𝑅𝑒𝑥  is the local Reynolds number. 
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III. NUMERICAL SOLUTIONS 

The system of nonlinear similarity Eqs. (9) and (10) subject to BCs (11.1) and (11.2) are solved 

numerically. The BVP has been rewritten as a system of first order IVP. We guessed the values of 𝜑′′(0) 

and 𝜃′(0). Here we have used the shooting technique, which is a combination of RK4 and a zero finding 

algorithm. Then the computed values of 𝜑′(𝜂) and θ(η) at 𝜂 = ∞ are compared with the BCs 𝜑′(𝜂∞) → 1 and 

𝜃(𝜂∞) → 0. The value of 𝜂∞  has been taken sufficiently large to ensure the far field BCs are satisfied 

asymptotically. The initial guesses 𝜑′′(0) and 𝜃′(0) are refined by the zero finding algorithm Newton-Raphson 

method. The C++ code was run on a personal computer. Interestingly dual solution branches are obtained 

numerically in the negative range of λ. To verify the efficiency of our numerical computations, we have 

compared our obtained values of 𝜑′′(0) for both the solution branches at 𝑀 = 0 with the reported results of 

Wang [7] and Bhattacharyya [8], which are presented in Table-1. 

 

IV. STABILITY ANALYSIS 

Sharma et al. [10] and Awaludin et al. [11] showed that the USB are the only stable solution by 

adopting the method of Merkin [12]. Similarly, we have carried a linear temporal stability analysis to embed the 

stable and feasible solution. We therefore consider the following unsteady form of Eqs. (4) and (5) 

  𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝑈
𝑑𝑈

𝑑𝑥
+ 𝜈𝑢𝑦𝑦 −

𝜎𝐵0
2

𝜌
(𝑢 − 𝑈) (14)     

               𝑇𝑡  + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝛼𝑇𝑦𝑦                                                            (15) 

We introduce the following new similarity variables 

𝜓 =  𝜈𝑥𝑈𝜑 𝜂, 𝜏 ,    𝜃 𝜂, 𝜏 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,    𝜂 =  

𝑈

𝜈𝑥
𝑦,    τ =  

𝑈

𝑥
 𝑡 (16)   

where τ is new dimensionless time. Substituting (16) into Eqs. (14) and (15) we obtain 

 𝜑𝜂𝜂𝜂 + 𝜑𝜑𝜂𝜂 +  1 − 𝜑𝜂𝜂
2  +𝑀2(1 − 𝜑𝜂 )-𝜑𝜂𝜏 = 0(17)   

𝜃𝜂𝜂 + 𝑃𝑟 𝜑𝜃𝜂 − 𝜃𝜏 = 0(18) 

The BCs in terms of new variables become, 

𝜑 0, 𝜏 = 0,    𝜑𝜂 0, 𝜏 = 𝜆,    𝜃 0, 𝜏 = 1(19)  

𝜑𝜂  𝜂, 𝜏 → 1,   𝜃(𝜂, 𝜏) → 0as𝜂 → ∞                                          (20) 

 
Table 1. Comparison of the values of 𝜑′′(0) for several λ at 𝑀 = 0. 

λ Present study Wang [7] Bhattacharyya [8] 

UB LB UB LB UB LB 

-0.25 1.4022408  1.40224  1.4022405  

-0.50 1.4956697  1.49567  1.4956697  

-0.75 1.4892982  1.48930  1.4892981  

-1.00 1.3288168 0 1.32882 0 1.3288169 0 

-1.15 1.0822311 0.1167018 1.08223 0.116702 1.0822316 0.1167023 

-1.20 0.9324733 0.2336497   0.9324728 0.2336491 

-1.2465 0.5842916 0.5542858 0.55430  0.5842915 0.5542856 

-1.24657 0.5745258 0.5639989   0.5745268 0.5639987 

 

Here, we choose 𝜑 𝜂 = 𝜑0(𝜂) and 𝜃 𝜂 = 𝜃0(𝜂) to test the stability of steady solution. Further, following 

Sharma et al. [10] and Awaludin et al. [11]  we take 

𝜑 𝜂, 𝜏 = 𝜑0 𝜂 + 𝑒−𝛽𝜏𝜑 (𝜂, 𝜏)                                            (21.1)  

𝜃 𝜂, 𝜏 = 𝜃0 𝜂 + 𝑒−𝛽𝜏𝜃 (𝜂, 𝜏)                                              (21.2) 

where β is the rate of disturbance and 𝜑  and 𝜃  are small corresponding to the steady solutions 𝜑0 𝜂  and 𝜃0 𝜂  
respectively. The solution is stable if β is positive, and the solution is unstable if β is negative. Substituting 

(21.1) and (21.2) into (17-20), and after linearization we obtain  

𝜑 𝜂𝜂𝜂 + 𝜑0𝜑 𝜂𝜂 + 𝜑0
′′𝜑 −  2𝜑0

′ + 𝑀2 − 𝛽 𝜑 𝜂 − 𝜑 𝜂𝜏 = 0                           (22) 

𝜃 𝜂𝜂 + Pr 𝜑0𝜃 𝜂 + 𝜃0
′𝜑 + 𝛽𝜃  − 𝜃 𝜏 = 0                                          (23) 

and the BCs become 

𝜑  0, 𝜏 = 0,    𝜑 𝜂 0, 𝜏 = 0,    𝜃  0, 𝜏 = 0(24.1) 

𝜑 𝜂  𝜂, 𝜏 → 0,    𝜃 (𝜂, 𝜏) → 0as𝜂 → ∞  (24.2) 

Now we take 𝜏 = 0 to test stability of the dual solutions for the steady state and set 𝜑  𝜂, 0 = 𝜑 0 and𝜃  𝜂, 0 =

𝜃 0. Therefore Eqs. (22) and (23) reduce to 
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𝜑 0
′′′ + 𝜑0𝜑 0

′′ + 𝜑0
′′𝜑 0 −  2𝜑0

′ + 𝑀2 − 𝛽 𝜑 0
′ = 0                             (25)  

𝜃 0
′′ + Pr 𝜑0𝜃 0

′ + 𝜃0
′𝜑 0 + 𝛽𝜃 0 = 0                                            (26) 

The BCs are 

𝜑 0 0 = 0,    𝜑 0
′  0 = 0,    𝜃 0 0 = 0                                     (27.1) 

𝜑 0
′  𝜂 → 0,    𝜃 0(𝜂) → 0as𝜂 → ∞                                       (27.2)       

 

Clearly Eqs. (25) and (26) are linear and homogeneous and also the boundary conditions (27.1) and 

(27.2) are homogeneous. There is no loss of generality to assume 𝜑 0
′′ = 1. Also the above equations constitute 

an eigenvalue problem where β is the eigenvalue and gives a set of infinite number of eigenvalues in descending 

order like 𝛽1 ≤ 𝛽2 ≤ 𝛽3 ⋯⋯. The sign of 𝛽𝑖’s (for 𝑖 = 2, 3, 4,⋯ ) follow the sign of 𝛽1. If the smallest 

eigenvalue 𝛽1 > 0, the solution is stable, otherwise unstable. Note that Eq. (9) is independent of 𝜃, so if the 

solutions of  (9) is stable then it is true for the solutions of (10) also. Therefore we solve Eq. (25) with the 

boundary conditions (27.1) and  𝜑 0
′′ = 1 using the numerical values of Eq. (9). The smallest eigenvalue 𝛽1 is 

determined with the shooting algorithm and Newton method so that the third boundary condition 𝜑 0
′  𝜂 → 0 as 

𝜂 → ∞ (Following the method of Cebeci and Keller [13]).  

 

V. RESULTS AND DISCUSSIONS 

Figs. (3) and (4) show the variations of 𝜑′′(0) and −𝜃′(0) with λ. Negative values of λ correspond to 

surface shrinking and 𝜆 > 0 stands for surface stretching. Our computations reveal that dual solutions exist for 

the above free BVP. It is noticed that we get unique solution for stretching sheet case while for shrinking sheet, 

we obtain dual solutions and the values of critical point𝜆𝑐  are given in Figs. (3) and (4). Our numerical results 

show that for 𝑀 = 0, dual solution exist in the range −1.24657 ≤ 𝜆 ≤ −1, which agrees with the reported 

results of Wang [7] and Bhattacharyya [8]. It is found that for 𝑀 = 0.1, the dual solution branches exist within 

the range −1.25537 ≤ 𝜆 ≤ −1.075 while for 𝑀 = 0.2, the range of the dual solution branches is −1.28181 ≤
𝜆 ≤ −1.1648. From these novel results, it can be confirmed that, the increment of Hartmann number (𝑀) 

increases the absolute value of the𝜆𝑐  . Figs. (5) and (6) elucidate the stream lines for 𝑀 = 0.2 and 𝜆 = −1.24 

for upper and lower branches respectively. 

Figs.(7) and (8) depict the dual profiles of 𝜑′(𝜂) and θ(η) for several values of Hartmann number  𝑀  
at  𝜆 = −1.24 and 𝑃𝑟 = 1. Fig. (7) elucidates that the effect of increasing 𝑀, increases 𝜑′(𝜂) in the upper 

branch (UB). But the opposite trend is found in the lower branch (LB). Fig.(8) also elucidates that the increment 

of 𝑀 diminishes the temperature profiles 𝜃′(𝜂) in the UB, but the opposite trend is found in the LB. Figs.(9) and 

(10) depict the dual profiles of the velocity and temperature for several λ at 𝑀 = 0.1 and 𝑃𝑟 = 1. Fig. (9) 

elucidates that the velocity profile 𝜑′(𝜂) decreases in the UB with increasing in  𝜆 , but the opposite trend is 

observed in the LB. Fig. (10) elucidates that the temperature profile 𝜃′(𝜂) increases in the UB with increasing in 

|𝜆| where for LB, it decreases. The boundary layer thickness for the USB is lower than the LSB for these 

figures. Similar trend was found in the reported results of Bhattacharyya [8] for 𝑀 = 0. 
The plot of the smallest eigenvalue 𝛽1 with the shrinking parameter λ is depicted in Fig. (11) for𝑀 =

0.1. It is clear from this figure that all the 𝛽1 > 0 in the USB and 𝛽1 < 0  in the LSB. Hence the USB is the only 

stable solution. 

 

VI. CONCLUSIONS 

The present study emphasizes the numerical solutions and the stability analysis of the dual solutions of 

this model. In addition the heat transfer is also discussed in this study. The resulting nonlinear and coupled self-

similar equations are integrated with the aid of shooting method. We have seen that unique solution exist for all 

𝜆 > 0, while dual solutions exist in the particular range of shrinking rate λ. One of the new findings of our study 

is the magnitude of the critical value 𝜆𝑐   increases with the increasing of Hartmann number,  𝑀. Moreover, it is 

observed that the boundary layer thickness for the USB is thinner than the LSB. A linear stability analysis is 

conducted by adopting the method of Merkin [12] and the lowest eigenvalues are obtained numerically 

employing the method of Cebeci and Keller [13]. Our numerical results reveal that the lower branch is unstable 

while the upper branch is stable and physically meaningful. 
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Fig. 3. Variation of 𝜑′′(0) with 𝜆 for several 𝑀. 
 

 
 

 

 
Fig. 4. Variation of −𝜃′(0) with 𝜆 for several 𝑀 at 

𝑃𝑟 = 1. 
 

 
Fig. 5. Stream function for upper branch for  

𝑀 = 0.2 and 𝜆 = −1.24. 
 

 
Fig. 6. Stream function for lower branch for  

𝑀 = 0.2 and 𝜆 = −1.24. 
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Fig. 7. Variation of dual 𝜑′(𝜂) with 𝜂 for several 

𝑀 at 𝜆 = −1.24. 
 

 
Fig. 8. Variation of dual 𝜃(𝜂) with 𝜂 for several 𝑀 

at 𝜆 = −1.24 and 𝑃𝑟 = 1. 
 

 
Fig. 9. Variation of dual 𝜑′(𝜂) with 𝜂 for several 

𝜆 at 𝑀 = 0.1. 
 

 
Fig. 10. Variation of dual 𝜃(𝜂) with 𝜂 for several 𝜆 

at 𝑀 = 0.1 and 𝑃𝑟 = 1. 
 



Stability analysis of MHD stagnation point flow and heat transfer over a shrinking sheet 

2nd international Conference on Numerical Heat Transfer and Fluid Flow                                               Page 80 

National Institute of Technology, Warangal, Telnagna 

 
Fig. 11. Plot of the smallest eigenvalue 𝛽1 with λ at 𝑀 = 0.1. 
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